

Booklet No.:

GG - 16

Geo Engineering & Geo Informatics

Duration of Test: 2 Hours

Hall Ticket No.

Name of the Candidate:

OMR Answer Sheet No.:

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

GG-16-A

GEO ENGINEERING & GEO INFORMATICS

1.	A system of equations	x+2y+3z=0,	x+4y+2z=0,	$2x + 6y + \lambda z = 0$	has	infinitely
	many solutions if $\lambda =$					

- (A) 1
- (B) 5
- (C) 0
- (D) 2
- 2. If one of the eigen values of a square matrix A is 2, then an eigen value of the square matrix $B = A^2 + I$ is
 - (A) 2
- **(B)** 1
- (C) 5
- (D) 0
- 3. If a real valued function $f(x) = x^2 5x + 6$ satisfies Rolle's theorem at $c \in [2,3]$, then c =
 - (A) 3/5
- (B) 5/2
- $(C) \quad 0$
- (D)
- 4. If x = v + w, y = w + u and z = u + v then $\frac{\partial(x, y, z)}{\partial(u, v, w)} =$
 - (A) -2
- (B) 1
- (C) 2
- (D) -1
- 5. The value of $\int_c \vec{F} \cdot d\vec{r}$ where $\vec{F} = x^2 i xy^2 j$ from (0,0) to (1, 1) along $c: y^2 = x$, is
 - (A) 1/5
- (B) 1/15
- (C) 1/3
- (D) 2/15
- **6.** The gradient of $\phi(x, y, z) = 2x^2 y z^2$ at (2,-1,1).
 - (A) 8i + j 2k
- (B) 2i-j+2k
- (C) i+j-2k
- (D) 8i j 2k
- 7. The value of $\int_{(-a,0)}^{(a,0)} x dy + y dx$ along the upper half of the circle $c: x^2 + y^2 = a^2$ is
 - $(A)\frac{\pi}{4}$
- (B) 1
- (C) 0
- (D) π
- 8. Any function ϕ satisfying $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ is called
 - (A) non-periodic function
- (B) periodic function
- (C) harmonic function
- (D) regular function

Set - A

Correct order from the center of the earth towards outer surface.

(B) 300

- (A) Core, inner mantle, outer mantle, crust
- (B) Inner core, mantle, hydrosphere
- (C) Inner core, crust, mantle, hydrosphere
- (D) Inner core, outer core, mantle, crust

(A) 3,000 billion years

700

(A)

13.

(B) 5,000 million years

900

(D)

1,000

IK.COM

- (C) 4,600 million years
- (D) 3,800 million years

(A) Crust and mantle

(B) Inner core and outer core

(C) Mantle and core

(D) Below the ocean crust

34.	Whi	ch of the following	g statement is cor	rect?				
	(A)	Weathering is the	e process of aggr	adatio	1.			
	(B)	Erosion is the pro	ocess of degradat	ion.				
	(C)	Volcanism is the	exogenetic proce	ess.				
	(D)	Gradation is the	epigenetic proces	SS.				
35.	Vent	ifact is an erosion	al feature of					
	(A)	Glacier (E	B) Flu <mark>vi</mark> al action	n (C)	Oceans	(D)	Air	
36.	Whi	ch of the following	g is cor <mark>re</mark> ct with r	espect	to stream eros	ion?		
	(A)	Deflation, attrition	on and <mark>ab</mark> rasion					
	(B)	Abrasion, attritic		/		h III		
	(C)	Abrasion, attritic		on		_		
	(D)	Abrasion, attritic	on and plucking					, /
	\							
37.		snow line altitude	in Himalayas is i					
	(A)	3000 m-3500 m		(B)	6200 m-7000	m		
	(C)	4200 m-5700 m		(D)	>7000 m			
20	TT 1	1 11 21	112 -1 (T . M	1			
38.		aped valleys with	steep wans and I					
	(A)	Glacier action		(B)	Aeolian action	on		
	(C)	Fluvial action		(D)	Sea action			
39.	Glac	ier moraine melts	and the debris d	lenosit <i>i</i>	ed in the form	of a r	ridge across the	vallev is
07.	calle		and the deons d	Срови	ca in the lothi	01 4 1	rage deloss the	varie y 18
	(A)	Ground moraine		(B)	Lateral morai	ne	\cap	В Л
	(C)	Medial moraine	HB		Terminal mon		(,()	IVI
				, /\				
40.	Wav	e cut bench is a er	osion feature of					
	(A)	Glacial action at	sea coast	(B)	Artificial cut	by hu	man	
	(C)	Action of sea on	a rocky coast	(D)	Action of rive	er neai	r coast	
41.	The	seafloor between o	coast and deep se	a can l	e divided into			
	(A)	3 zones (E	3) 6 zones	(C)	4 zones	(D)	7 zones	
42.	Kars	t topography is ob		y in the		_	al formations	
	(A)	Sand stone (E	3) Shales	(C)	Khondalites	(D)	Lime stone	
C-4 [A							00
Set - [A			6				GG

				. 01		e 1			
43.	The calle		absort	o water and wi	ll not y	yield or allow v	ery lit	ttle amount of wate	r is
	(A)	Aquifer	(B)	Aquiclude	(C)	Aquitard	(D)	Aquifuge	
14.	Soils	derived from	the						
	(A)	Water bodies			(B)	Oceans and so	eas		
	(C)	Rocks	П		(D)	Vegetation	. [
45.	Blac	k cotton soils a	ıre der	ived from the			ľ I		
	(A)	Granite rock			(B)	Basaltic rock			
	(C)	Lime stone ro	ock		(D)	Coal deposits			
46.	Resis	stivity of a form	nation	saturated with	n salt v	vater will be in	the ra	nnge	
-00	(A)		11000101	, participation (1)	(B)	10-50 ohm-m			
	(C)	50-100 ohm-1	m		(D)	>100 ohm-m			
47.	Saist	mic wave veloc	oity in	the hard rock	will be	in range of			
+ /•		0.1 to 0.5 km		the hard fock	(B)	2.1 to 4.0 km	lsec		
	(C)	4.0 to 6.0 km			(D)	1.5 to 2.5 km			
	(-)			Sr		11			
48.	The	instrument that	used	to pick up the	seismi	c wave from th	ne eart	h surface is called	
	(A)	Seismograph			(B)	Microphone			
	(C)	Seismic time	r		(D)	Geophone			
49.	Whe	n the two limb	s of th	e fold are not	mirror	image to the o	ther, t	hen it is called	//
	(A)	Symmetrical		PK	(B)	Plunging fold		(,() \	M
	(C)	Irregular fold			(D)	Asymmetrica	l fold		W I
50.	Whe	n the hanging	wall g	oes up with res	spect to	o foot wall it is	called	d	
	(A)	Gravity fault	(B)	Thrust fault	(C)	Normal fault	(D)	Slip fault	
51.	The	point on the ea	rth's s	urface vertical	llv abo	ve the focus po	oint of	an earthquake is	
	(A)	Focus point	(B)	Epicentre	(C)	Hypocentre Hypocentre	(D)	Anticentre	
52.	Poro	sity is highest	in the	following for	nation				
J 4 •	(A)	Gravel	(B)	Sand	(C)	Silt	(D)	Clay	
Set -	A				7				GG

53.			proces	s by which	rocks bre	akdown in pl	ace to p	produce soils an	d
		ments.			(D)	T ::1 : C: :			
	(A)	Weathering			(B)	Lithification			
	(C)	Subduction			(D)	Metamorphi	sm		
4.	Who	t is watershed	2						
٠.	(A)			ya haundar	y vyhoro o	11 the weter is	collact	ted at a common	n noint
	(A) (B)				1			nd snow fall fl	-
	(D)	common stream		nom which	i an prec	ipitation, rai	inan a	id show fair if	ows to a
	(C)	It is only a wa		llection are	a other th	an any h umai	n activit	fv.	
	(D)	It is an area v							
	(D)	it is all area v	viiose (outer <mark>mi</mark> ent i	s more th	un 2000 sq.m	11.		
•	Whi	ch of the follow	ving ar	e th <mark>e p</mark> enin	sular rive	rs	L		
	(A)	Ghaghra, Gai			(B)	Krishna, Per	nnar		
	(C)	Brahmaputra		butaries	(D)	Kosi, Sarada			
	` 1				` '				<i>y</i> /
	Choo	ose the option	which	does not fit	the patte	rn.			
	(A)	Gravity dam			-	Earth dam	(D)	Check dam	
	, ,		X		` ´				
	The	first method us	sed in p	preparation	of EIA				
	(A)	Adhock meth	od	7	(B)	Checklist m	ethod		
	(C)	Set's method			(D)	Matrix meth	od		
	Defo	orestation lead	to Glol	nal warmin	g hy releg	icina			
•	(A)	Oxygen	io Gio	Jai waiiiii	(B)	Carbon diox	ide		
	(C)	Ozygen			(D)	Nitrogen	iuc		
	(C)	Ozone			(D)	Nitrogen			
•	Biolo	ogical Oxygen	Dema	nd (BOD) 1	measures			\bigcirc	ΝЛ
	(A)	Organic matt	_		(B)	Inorganic m	_	$(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	IVI
	(C)	Chemical ma	tter		(D)	Physical ma	tter		
•	Eartl	h's peak emissi	ion rad	iation is at	wave len	gth			
	(A)	0.5 μm	(B)	0.9 µm	(C)	9.7 μm	(D)	10.8 μm	
	Map	ping of turbidi	ty in sı	ırface wate	r bodies i	s enlightened	using		
	(A)	0.6 µm & IR	(B)	0.45 µm &	t IR (C)	Red & IR	(D)	IR & Microwa	ave
						1 1 1			
	Wha	t is the scale o	f photo	ograph take	en from a	height of 300) m wit	h camera tocal	length of
2.	Wha	t is the scale om?	f photo	ograph take	en from a	height of 300) m wit	h camera tocal	length of

Set -	A			9				$\mathbf{G}\mathbf{G}$
	(C)	GPS		(D) Atmosph	nere		
71.	Pola: (A)	r orbit satell Earth resoi	ites are meant f urces	for mapping a		_		
- 1			•	` .				
	(C)	500-900		(D)				
70.	Pola: (A)	r satellites a 34000-350	ltitude range be 100	tween(B)			surrace.	
70	, ,			` .			surface	
	(A) (C)	West to ea		(D)	1			
69.	Sun (A)	synchronou: Polar orbit	s satellite rotation	on path is (B)	Equatori			
			UL	DA	V		C(JIVI
	(D)	Height dis	placement of A	will be less	than that of	В.	00	$\Lambda \Lambda f$
	(C)	_	placement of A					
	(A) (B)	•	placement of A placement of B					
	is co (A)	rrect?	placement of A	and R will h	e towards o	each other		
			nadir point at	5 km and 8 k	m distances	s. Which o	f the followi	ng statement
68.		=	B is of equal	_		_		
	\ - • /	,	(2) 1.10,			2	3,000	
	(A)	1:40,000	(B) $1:10$,		1:25,000	(D)	1:4,000	
U/.			the map is 4 c		etween two	bundings	apart by 100	oo in and the
67.	Find	the scale of	a map, when t	he distance l	etween two	huildings	apart by 100	00 m and tha
	(A)	1:50,000	(B) 1:5,0	0,000 (C)	1:000,00	00 (D)	1:10,000	
66.	\\		e from the follo					
		0			1			
	(D)	_	e of longitude d			-		
	(D) (C)		e of longitude h					
	(A) (B)	_	e of longitud <mark>e h</mark> e of longitud <mark>e h</mark>	- C	, , , , , , , , , , , , , , , , , , ,			
65.			lowing statem <mark>e</mark>					
	(A)	_	(B) 6 mm			(D)	10 mm	
~ ••			ken from an alt					-
64.	If th	e image of	a triangulation	station of R	L 500m is	4cm from	the princip	al point of a
	(A)	2 cm	(B) 4 cm	(\mathbf{C})	1 cm	(D)	3 cm	
	_	-	nap on scale 1:			(D)		
63.		_	es are run per	•		of 30 km	wide, their	spacing on
					e			

	adue of	
72.	1	
	(A) Inter National Satellite (B) Indian Satellite Tech	
	(C) Indian National Satellite (D) International Satellite	e Technology
73.	One of the following satellite is Geostationary satellite	
70.		CARTO SAT
74.		\\
	(A) Multi Spectral System (B) Multispectral Scanne	•
	(C) Minimum Space System (D) Multi Spectral Search	ning
75.	Satellite remote-sensing data is acquired through	
75.	(A) Photography (B) Scanning & digitisati	on
	(C) Video system (D) Filming	
76.	I I	
	(A) Radar Beam Vision (B) Radio Beam Videoco	on //
	(C) Return Beam Videocon (D) Radio Beam Video	-0/
77.	Expand GSLV	
, , .	(A) Global Satellite Launching Vehicle(B) Geo Satellite Launch	ing Vehicle
		ellite Launch Vehicle
	'llat'	
78.		
	(A) Tumba (B) Ahmedabad (C) Sriharikota (D)	Bangalore
79.	Satellite Data Receiving Station in India is at	
19.		Shadnagar
		,() \/
80.	. Expand NASA	
	(A) National Atmospheric Space Agency	
	(B) National Aeronautics and Space Administration	
	(C) National Atmospheric Science Agency	
	(D) National Academic Space Administration	
81.	. At present in our country crop area, vigor, and crop yield estimation	s arrived by
	(A) Field verification	
	(B) Satellite remote-sensing	
	(C) Aerial photography	
	(D) Satellite remote-sensing & few field verifications	

82.	Micr	owave remote-sensing	ag is very mucl	n ucafi	ıl for manning		
02.		Land use (B)		(C)	Water bodies	(D)	Forest timber
83.		c source of Tsunami					
	(A)	Tornadoes (B)	Earthquakes	(C)	Landslides	(D)	Floods
84.	Oces	ansat satellite data wi	11 he useful in	identif	iving notential		
04.	(A)	Phytoplankton	ii oc usciui iii .	(B)	Mangroves		
	(C)	Oil resources		_`	Ocean minera	ls	
85.	Defo	restation and affores	tation could be	well i	monitored with	remo	te sensing data of
05.	(A)	One season	tation could be	(B)	Pre & post mo		
	(C)	One year data		(D)	-		a of 5 to 10 years
		333 3 333		(-)			
86.	Struc	ctural features- F <mark>ault</mark>	s/fracture linea	ments	are potential ze	ones c	of groundwater
	(A)	Delta areas		(B)	Hard rock terr	rain	
	(C)	Forest areas		(D)	Deserts		
87.		elopment of vegetation					
	(A)	Storm surge and Ts	unamis	(B)	Floods from t		ers
	(C)	Earthquakes	7 h	(D)	Volcanic activ	vity	
88.	High	est Potential zones for	or landslides in	India	3 6		
00.	(A)	Western ghats	or landshaes in	(B)	Eastern ghats		
	(C)	Aravalli		(D)	Himalayas		
	(-)						
89.	Ther	mal imaging is used	in identifying				
	(A)	Forest fires & coal	seems fire	(B)	Forest timber	- 1	$\bigcirc \bigcirc \land \land$
	(C)	Snow covered areas		(D)	Flood zone m	appin	UIVI
90.	Whi	ch one of the followi	na etatamante i	e not (correct 9		
70.	(A)	GIS technology is t	· ·				
	(B)				11 0	and fu	indamental concepts fo
	(2)	spatial measuremen		r prot	cosing maps c		mamontal concepts to
	(C)	GIS technology cor		capabi	lities for overly	ying n	naps.
	(D)	GIS technology cap	•	-	•	_	-
91.	The	range measurements	in GPS are ma	de wit	h		
•	(A)	3L- band frequenci		(B)	2L- band freq	uenci	es
	(C)	2C- band frequenci		(D)	3C- band freq		
ı							
Set -	A			11			GG

				9 8
92.	Geo	graphical Information Science (GIS	Sc) can	be defined as
> 	(A)	The use of this to solve physical p		
	(B)	The science behind GIS		
	(C)	The application of GIS to a range	of scie	entific discipline
	(D)	The epistemological study of GIS		
93.	By d	lefinition GIS must include		
	(A)	A method of data storage, retrieva	al and i	representation
	(B)	A method of storing demographic	and g	eographic information
	(C)	A method of scanning maps to pro	oduce	<mark>r</mark> aster fi <mark>les</mark>
	(D)	A system of data generation		
94.	The	major areas of study in geography	are	
	(A)	Physical geography and geology		
	(B)	Human geography and physical g		hy
	(C)	Physical geography and cartography	-	
	(D)	Area geography and place geogra	phy	40//
0.5	T1	C-11-	- COIC	
95.		following are the critical elements		
	(A)	Data capture	(B) (D)	Data management
	(C)	Networking	(D)	Data display
96.	Attri	ibutes are almost best classified by	4	
<i>.</i>	(A)	Quantities Quantities	(B)	Natural breaks
	(C)	Equal intervals	(D)	Unique values
	(-)	1	()	1
97.	Whe	en we select from set in Arc-view, t	he logi	cal (Boolean) equivalent is
	(A)	OR (B) NOT	(C)	AND (D) Exclusive OR
98.	A bu	affer operation performed on a poin	t selec	ts area shape like
	(A)	A rectangle (B) A square	(C)	A triangle (D) A circle
99.	• •	ical data input or data capture funct		•
	(A)	Scanning	(B)	Editing
	(C)	File compression	(D)	Mosaicing
100	In all	on anniversing field weath in live it -	l +a	
100.		nain surveying field-work is limited	(B)	Roth linear and angular massuraments
	(A) (C)	Linear measurements only Angular measurements only	(D)	Both linear and angular measurements All the above
		migular measurements only	` '	
Set -	A		12	GG

Set -	A				13				GG
	(A) (C)	sequence of va (A) and (B)	alues		(B) (D)	pointer to first only (A)	value i	in the sequence	
109.	An a	rray is							
-	(A)		(B) Error		(C)		(D) N	None of the abov	re
108.	, ,	vitch case withou		atement w	` ,		OVE		
	(C)	Structure and	Union		(D)	None of the ab	ove		
	(A)	Structure .			(B)	Union			
107.		hich of the foll rgest member?		types, th	e amo	ount of memory	requir	ed is equal to m	emory
10=			٦P	R	Δ	NK			Λ.
	(A)	(pipeline)	(B) * (as	terisk)	(C)	_ (underscore)	(D) -	- (hyphen)	
106.	Whi	ch of the follow	ing Symbo	l is allow	ed in v	variable declarat	tion ?		
	(C)	To check the a	accuracy of	survey	(D)	To avoid long	offsets	from chain line	
	(A)	To take offset			(B)		e numb	er of chain lines	
105.	In ch	nain surveying t	ie lines are	primarily	, provi	ded			
	(C)	General layou	t of the cha	in lines	(D)	Importance of	the fea	tures	
	(A)	Length of the		i 1:	(B)	Scale of plottir		~ U //	
104.				n chain s		ng, does not de		pon	
	\								
	(C)	Dome			(D)	A river bed			
	(A)	A saddle or pa			(B)	Depression			
103.	Clos	ed contours of	decreasing	values to	wards	their centre, <mark>re</mark> p	resent		
	(D)	By the tangen	ı memod <mark>ol</mark>	piotting					
	(C)	By consecutive			en stat	IOII			
	(B)					off each traverse	e leg	\	
	(A)	By independe							
102.		most reliable m							
	(C)	From higher le		er	(D)	From lower to		level	
	(A)	From whole to			(B)	From part to w	hole		
101.	The	main principle	of surveying	g is to wo	ork				
						9 1			

		20	U	6			
110.	Consider the followint i;	lowing statement and	what wi	ill happen on co	mpiling	g this code sr	nippet ?
	for(i=0;i<100;i+	+);					
	{printf('Decapri	o');}					
	(A) Will gener	ate error	(B)	Will raise exc	eption		
	(C) No error a	nd exception	(D)	None of the al	bove		
111.	A NULL pointer	ris					
	(A) Pointer po	inting to noth <mark>in</mark> g	(B)	Pointer pointi	ng to ne	egative value	
	(C) Pointer po	inting to garb <mark>ag</mark> e valu	ie (D)	All the above			
112.	What is the outp	ut of the following co	de snin	net ?			
112.	main()	at of the following co	ac sinp		V		, /
	{						
	int x;					-0	
	x=5.0 %2;						
	printf("%d",x);	06					
	}		7:	a 1 1			
	(A) 2.5	(B) 1	(C)	Error	(D)	1.0	
110	XX71:1 C.1 C.1	1 . 1 . 1.	1.6	11.4	1.	0	
113.		lowing keyword is us			_	=	
	(A) goto	(B) break	(C)	continue	(D)	(B) and (C)	ΝЛ
114.	What is the outp	ut of the following ou	itput ?	INN	\		IVI
	int a=5;		-				
	printf("%d", a++	+ * ++a);					
	(A) 6	(B) 36	(C)	30	(D)	25	
115.	A pointer is hold	ling an address of a va	ariable.	Later the variab	ole is re	leased or free	ed. Such a
	pointer is called						
	(A) Dangling p	oointer	(B)	Null pointer			
	(C) Void point	er	(D)	None of the al	bove		
Set -[A		14				GG

	_		4		U	C.				
116.		se a newly-bo					7			
		mate at the	_							
	•	e another pa		•	•					
	- 1	produces on		•			very month	n from the s	econd mont	h
		w many pairs	· .							
	(A) 8	39	(B)	144	(C)	34	(D)	55		
117.		tion call <mark>i</mark> ng it								
	(A) N	Nested function	on call		(B)	Recursion				
	(C) (Conditional B	ranchi	ng	(D)	None of	the above			
118.	What i	s the output f	ile ger	nerated by lin	nker?					
	(A) F	Header file			(B)	Executab	ole file			
	(C) I	Library file			(D)	None of	the above			
119.	What c	loes the follow	wing c	ode snippet	do?					
	int ma	in()								
	{									
	int a=	10,b=20;		Vr.		1				
	a^=b^=	=a^=b;				31				
	printf(("%d,%d",a, t	o);							
	return	1;								
	}									
	(A) (Computes exp	onent	s of each oth	ner					
	(B) I	Does not affect	et the	values of a a	nd b	N I I		00	N 11	
		Swap the valu	- 1		А	IMI			$\mathcal{I} \mathcal{I} \mathcal{I}$	
		None of the al			"				<i>-</i> V	
	` /									
120.	What v	will be the out	tput of	the following	ng progi	ram ?				
		de <stdio.h></stdio.h>	1		01 0					
	void m									
		ned char c=29	00:							
	_	"%d",c)	•							
	}	, o a , c)	,							
	(A) 2	290	(B)	error	(C)	34	(D)	garbage va	alue	
	(1.1) 2		(2)	-1101	(0)		(D)	Smouge V		
-										
Set -	A				15				GG	

UPIQPBANK.COM

GEO ENGINEERING & GEO INFORMATICS SET-A

Question No	Answer	Question No	Answer	
1	В	61	В	
2	C	62	С	
3	В	63	В	
4		64	D	
5	D	65	A	
6	D	66	C	
7	С	67	С	
8	C	68	C C C A	
9	A	69	Α	
10	В	70	С	
11	C	71	A	
12	A	72	A C	
13	D	73	В	
14	C	74	В	
15	А	75	В	
16	C	76	C	
17	В	77	D	
18	A	78	C	
19	C	79	D	
20	D	80	В	
21	С	81	D	
22	В	82	D	
23	С	83	В	
24	D	84	Α	
25	B	85	D	
26	II()IPH	86	В) \ /
27	B	87	A	
28	В	88	D	
29	С	89	Α	
30	D	90	Α	
31	В	91	В	
32	D	92	В	
33	С	93	Α	
34	В	94	В	
35	D	95	С	
36	С	96	В	
37	С	97	С	
38	Α	98	D	
39	D	99	С	
40	С	100	Α	

UPIQPBANK.COM